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The Simplicity of Miller-Bravais Indexing 
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The most important crystallographic formulae for hexagonal crystals are tabulated for both ortho- 
hexagonal and Miller-Bravais indexing. It is shown that the Miller-Bravais formulae can be expressed 
as simply as those of the orthohexagonal system while still retaining the virtues of symmetry and a 
primitive unit cell. 

This note sets out to link two recent papers dealing 
with the indexing of hexagonal crystals (Otte & Crock- 
er, 1965; Frank, 1965) and to give a table of important 
crystallographic formulae in various systems of index- 
ing. 

Otte & Crocker (1965) describe in detail the indexing 
of hexagonal crystals according to the orthohexagonal, 
the three-axis hexagonal, and the four-axis hexagonal 
(using Miller-Bravais indices) systems. They list some 
important crystallographic formulae for each system 
and conclude that the simplicity of the formulae, as 
given, warrants widespread use of the orthohexagonal 
system. However, the argument overlooks one com- 
plication of the orthohexagonal system and some sig- 
nificant simplifications which can be made to the four- 
axis formulae. With these changes incorporated, the 
four-axis formulae are comparable in simplicity with 
those of the orthohexagonal system. 

The following definitions are needed: 

d°=d/Q = identity distance along a direction d, 
n o =n/Q*=interplanar spacing between planes with 

normal n*, 
0 =angle between directions dl, d2, 

= angle between plane normals n*l, n*2, 
r/ = angle between direction d and normal n*, 

= c/a = axial ratio of hexagonal lattice. 

These symbols have been chosen to agree, where 
possible, with those used by Otte & Crocker, but new 
symbols d o and n o have been introduced for identity 
distances and interplanar spacings. This is necessary 
since the orthohexagonal system is based on a non- 
primitive unit cell and the simple formulae quoted by 
Otte & Crocker for d and n do not always correspond 
to true identity distances or spacings in this system. 
The present definitions allow both d and d °, and n and 
n o , to be determined by specifying that: 
for orthohexagonal indexing, 

t It should be noted that, in Table 2, the formula for cos 0 
in the three-index form of the four-axis system needs a factor 
of ½ before y2wlw2, while among the four-index formulae, that 
for cos ~o needs a factor of k before y-2lxl2 and that for cos r/ 

3 before lw. a factor of-~ 

2, if p + q and r are both even, Q / 1, otherwise, 
Q , =  { 2, if e + f  is odd, 

1, otherwise; and 

for the other systems, 

Q = Q* = 1 throughout. 

For the Miller-Bravais system, algebraic manipula- 
tion, based largely on the result that, if 

x+y+z=O,  
then 

xy--½(x + y)2-½x2-½y2= ½(z 2 -  x z-y2),  

allows the formulae in Otte & Crocker's Table 21" to 
be simplified to those in the top part of Table 1 here. 
For the sake of completeness, the formulae for the 
three-axis hexagonal system are also included in Table 1. 

As Frank (1965) has shown, Miller-Bravais indices 
are proportional to the components of certain four- 
dimensional cartesian vectors. The simple formulae can 
therefore be derived as a series of scalar products of 
such vectors and the tensorial formulae quoted by 
Otte & Crocker for d, n, etc. hold true with the metrics 

and 

atj = (3a2/2) 1 0 0 0  ) 
0 1 0 0  
0 0 1 0  
0 0 0 2 2  

a~J=(2a-2/3)( 1 0 0 0  ) ' 0 0  1 0 0  1 0 0  

0 0 0 2  -2 

where 2 = 1/~ is the scaling factor introduced by Frank. 
The lower rows of Table 1 list some other formulae 

of crystallographic interest. The particularly simple 
forms for transforming between planes and directions 
in the Miller-Bravais system are worthy of note. 
Further, in deriving the Miller-Bravais forms for di- 
rections common to planes etc, where essentially the 
problem is to calculate a vector product, both Frank 
(1965) and Weber (1922) advise calculation via one of 
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Direction, d 
(d/a)2 = (QdO/a)2 
Q = 2 when 
(dld2/a2) cos 0 

Table 1. C r y s t a l l o g r a p h i c  f o r m u l a e  f o r  h e x a g o n a l  l a t t i c e s  

Orthohexagona l  indexing 
y = c/a 

[pqr] 
p2 + 3q2 + y2r2 
p + q and r, both even 
PIP2+ 3qlq2+ y2rlr2 

Plane normal, n* (efg) 
(a/n)2 = (a/ Q*nO)2 e 2 + f2 /3  +g2/y2 
Q* = 2 when e + f  is odd 
(a2/nln2) cos ta el e2 + f jf2/3 + glg2/y z 

(d/n) cos r/ ep + fq  + gr 

Direction of normal n* [e f /3  g/72] 
Plane with normal d (p 3q ~,2r) 

Direction common to [flg2-f2gl 
planes with normais g l e 2 - g 2 e l  
n*l, n*2 elf2 -- e2fl] 

Plane containing ( q l r z -  qzr l 
directions d~, d2 r l P 2 - r 2 P l  

Plq2 --P2ql) 

Direction perpendicular [ y Z f r - 3 g q  
to d, and in plane with g p - y 2 e r  
normal n* 3 e q - f p ]  

Plane with normal ( y 2 f r - 3 g q  
perpendicular  to n*, and 3(gp--72er) 
containing d y2(3eq-- fp))  

Miller-Bravais indexing 
). = ~(])c /a  

[uvtw] 
(3) (U2 + v2 + t2 + )'2W2) 
never 
(--~) (UlU2 "+- Vl V2 + tit2 + 22WI W2) 

Three-axis hexagonal indexing 
y = c/a 

[ U V W l  
U2+ V 2 -  U V + 7 2 W 2  
never 
U1U2+ Vl Vz---12-(U 1 V2=[ - U2VI) 

+ 7 2 W1 W2 

(hk i l )  
(~t) (hZ + k2 + iz + 12/22) 
never 
(~) (hlh2 + k l k2 + ili2 + II 12/22) 

hu + kv + it + lw 

[h k i l/22] 
(u v t 22w) 

[11(k2 - i2) - 12(k l - i l)  
ll(i2 -- hz) - 12(il - hi) 

11(h2 - k2) - 12(hl - k l )  
- -  3 ( h t k z - h 2 k t ) )  

(WI(V2 --/2) -- W2(Vl -- tl) 
Wl(t2 -- U2) -- WZ(tl -- Ul) 

WI(U2-- V2)-- W2(Ul -- Vl) 
-- 3(UlV2 -- tt2Vl)) 

[l(v - t )  - 22w(k - i) 
l ( t -  u) - 22w(i-h) 

l(u - v) - 2Zw(h - k) 
- 3(hv - ku)] 

(l(v - t )  - 22w(k - i) 
l(t -- u) -- 22w(i-- h) 

l(u -- v) -- 2Zw(h - k) 
-- 3).2(hv - ku))  

( H K L )  
(_~) ( H2  + H K  + K2) + LZ/yz 
never 
(~) (HI H2 + KI K2) + ~(H1 K2 

+ H2K1) + L1L2/y 2 
H U + K V + L W  

[2H+K H + 2 K  3L/2y2] 
(2U-  V - U + 2 V  2y2W) 

[ K I L 2 -  K2LI 
Lt  H2 - L2H1 

HI K2 - HzK1] 

(V) W 2 -  V 2 W  1 
WI U2 - W2 U] 

UI V 2 -  U2 VI) 

[ L ( U -  2 V )  + 2 y Z K W  
L ( 2 U -  V) - 2y2HW 

( -  U +  2 V ) H - ( 2 U -  V)K] 

((H+ 2K) W -  3L V/2y2 
- (2H+ K)  W +  3L U/2y2 

( 2 H +  K )  V -  ( H +  2K) U) 

the three-axis systems, but this seems an unnecessary 
complication since it involves t ransformat ion  of  indices. 
The problem can be tackled directly. For  example, in 
order to find the direction [ U V T W ]  in the plane ( h k i l )  

and perpendicular  to [uv tw] ,  all that  is necessary is to 
solve, for U: V : T :  W ,  the three linear equations 

h U + k V + i T + I W = O  

u U +  v V +  t T +  2 2 w W = O  

U +  V+ T = 0 .  

The result is easily shown to be as given in Table 1 
and is, of  course, identical with that  found by working 
through a three-axis system. 

While any assessment of the relative merits of dif- 
ferent systems must  be subjective and must  depend on 
the part icular  application being considered, I believe 
it is fair to say that  Table 1 shows that there is little 

to commend the three-axis hexagonal  system and that,  
for the other systems, 

(1) for distances and spacings, the Miller-Bravais  
system is simpler in that  there is no confusion over Q 
and Q*, 

(2) for ~o, (p, and r/, there is little to choose between 
the formulae,  

(3) for the remaining results, the essential difference 
is that  one requires the calculation of three terms and 
the other four, but the Miller-Bravais system contains 
a simple inbuilt symmetry check. 
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